3.1.98 \(\int \frac {1}{\sqrt {a x+b x^4}} \, dx\) [98]

3.1.98.1 Optimal result
3.1.98.2 Mathematica [C] (verified)
3.1.98.3 Rubi [A] (verified)
3.1.98.4 Maple [C] (verified)
3.1.98.5 Fricas [C] (verification not implemented)
3.1.98.6 Sympy [F]
3.1.98.7 Maxima [F]
3.1.98.8 Giac [A] (verification not implemented)
3.1.98.9 Mupad [B] (verification not implemented)

3.1.98.1 Optimal result

Integrand size = 13, antiderivative size = 197 \[ \int \frac {1}{\sqrt {a x+b x^4}} \, dx=\frac {x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt [4]{3} \sqrt [3]{a} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x+b x^4}} \]

output
1/3*x*(a^(1/3)+b^(1/3)*x)*((a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1 
/3)*x*(1+3^(1/2)))^2)^(1/2)/(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))*(a^(1/3)+b^(1/ 
3)*x*(1+3^(1/2)))*EllipticF((1-(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+ 
b^(1/3)*x*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*((a^(2/3)-a^(1/3) 
*b^(1/3)*x+b^(2/3)*x^2)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/a 
^(1/3)/(b*x^4+a*x)^(1/2)/(b^(1/3)*x*(a^(1/3)+b^(1/3)*x)/(a^(1/3)+b^(1/3)*x 
*(1+3^(1/2)))^2)^(1/2)
 
3.1.98.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.25 \[ \int \frac {1}{\sqrt {a x+b x^4}} \, dx=\frac {2 x \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},-\frac {b x^3}{a}\right )}{\sqrt {x \left (a+b x^3\right )}} \]

input
Integrate[1/Sqrt[a*x + b*x^4],x]
 
output
(2*x*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/6, 1/2, 7/6, -((b*x^3)/a)])/S 
qrt[x*(a + b*x^3)]
 
3.1.98.3 Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {1917, 851, 766}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {a x+b x^4}} \, dx\)

\(\Big \downarrow \) 1917

\(\displaystyle \frac {\sqrt {x} \sqrt {a+b x^3} \int \frac {1}{\sqrt {x} \sqrt {b x^3+a}}dx}{\sqrt {a x+b x^4}}\)

\(\Big \downarrow \) 851

\(\displaystyle \frac {2 \sqrt {x} \sqrt {a+b x^3} \int \frac {1}{\sqrt {b x^3+a}}d\sqrt {x}}{\sqrt {a x+b x^4}}\)

\(\Big \downarrow \) 766

\(\displaystyle \frac {x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt [4]{3} \sqrt [3]{a} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x+b x^4}}\)

input
Int[1/Sqrt[a*x + b*x^4],x]
 
output
(x*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/ 
(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*EllipticF[ArcCos[(a^(1/3) + (1 - Sq 
rt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)], (2 + Sqrt[3])/4])/ 
(3^(1/4)*a^(1/3)*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + (1 + Sq 
rt[3])*b^(1/3)*x)^2]*Sqrt[a*x + b*x^4])
 

3.1.98.3.1 Defintions of rubi rules used

rule 766
Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/ 
(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*((s + 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])* 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x 
]
 

rule 851
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = 
 Denominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^ 
n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && 
FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 1917
Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(a*x^j + 
b*x^n)^FracPart[p]/(x^(j*FracPart[p])*(a + b*x^(n - j))^FracPart[p])   Int[ 
x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !Integ 
erQ[p] && NeQ[n, j] && PosQ[n - j]
 
3.1.98.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.12 (sec) , antiderivative size = 671, normalized size of antiderivative = 3.41

method result size
default \(\frac {2 \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, {\left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}^{2} \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, b F\left (\sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}, \sqrt {\frac {\left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{\left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {b x \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\) \(671\)
elliptic \(\frac {2 \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, {\left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}^{2} \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, b F\left (\sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}, \sqrt {\frac {\left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{\left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {b x \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\) \(671\)

input
int(1/(b*x^4+a*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
2*(1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*((-3/2/b*(-a*b^2)^ 
(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*x/(-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/ 
2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2)*(x-1/b*(-a*b^2)^(1/3))^ 
2*(1/b*(-a*b^2)^(1/3)*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/ 
3))/(-1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2) 
^(1/3)))^(1/2)*(1/b*(-a*b^2)^(1/3)*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b 
*(-a*b^2)^(1/3))/(-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(x 
-1/b*(-a*b^2)^(1/3)))^(1/2)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2 
)^(1/3))*b/(-a*b^2)^(1/3)/(b*x*(x-1/b*(-a*b^2)^(1/3))*(x+1/2/b*(-a*b^2)^(1 
/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/ 
b*(-a*b^2)^(1/3)))^(1/2)*EllipticF(((-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b 
*(-a*b^2)^(1/3))*x/(-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/ 
(x-1/b*(-a*b^2)^(1/3)))^(1/2),((3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b 
^2)^(1/3))*(1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(1/2/b*(- 
a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(3/2/b*(-a*b^2)^(1/3)-1/2*I*3 
^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))
 
3.1.98.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.08 \[ \int \frac {1}{\sqrt {a x+b x^4}} \, dx=-\frac {2 \, {\rm weierstrassPInverse}\left (0, -\frac {4 \, b}{a}, \frac {1}{x}\right )}{\sqrt {a}} \]

input
integrate(1/(b*x^4+a*x)^(1/2),x, algorithm="fricas")
 
output
-2*weierstrassPInverse(0, -4*b/a, 1/x)/sqrt(a)
 
3.1.98.6 Sympy [F]

\[ \int \frac {1}{\sqrt {a x+b x^4}} \, dx=\int \frac {1}{\sqrt {a x + b x^{4}}}\, dx \]

input
integrate(1/(b*x**4+a*x)**(1/2),x)
 
output
Integral(1/sqrt(a*x + b*x**4), x)
 
3.1.98.7 Maxima [F]

\[ \int \frac {1}{\sqrt {a x+b x^4}} \, dx=\int { \frac {1}{\sqrt {b x^{4} + a x}} \,d x } \]

input
integrate(1/(b*x^4+a*x)^(1/2),x, algorithm="maxima")
 
output
integrate(1/sqrt(b*x^4 + a*x), x)
 
3.1.98.8 Giac [A] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.20 \[ \int \frac {1}{\sqrt {a x+b x^4}} \, dx=\frac {1}{3} \, \sqrt {b x^{4} + a x} x - \frac {a \arctan \left (\frac {\sqrt {b + \frac {a}{x^{3}}}}{\sqrt {-b}}\right )}{3 \, \sqrt {-b}} \]

input
integrate(1/(b*x^4+a*x)^(1/2),x, algorithm="giac")
 
output
1/3*sqrt(b*x^4 + a*x)*x - 1/3*a*arctan(sqrt(b + a/x^3)/sqrt(-b))/sqrt(-b)
 
3.1.98.9 Mupad [B] (verification not implemented)

Time = 9.26 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.20 \[ \int \frac {1}{\sqrt {a x+b x^4}} \, dx=\frac {2\,x\,\sqrt {\frac {b\,x^3}{a}+1}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{6},\frac {1}{2};\ \frac {7}{6};\ -\frac {b\,x^3}{a}\right )}{\sqrt {b\,x^4+a\,x}} \]

input
int(1/(a*x + b*x^4)^(1/2),x)
 
output
(2*x*((b*x^3)/a + 1)^(1/2)*hypergeom([1/6, 1/2], 7/6, -(b*x^3)/a))/(a*x + 
b*x^4)^(1/2)